Category Archives: science

Monsoon Clouds

The time when water vapor is no longer a constraint on cloud formation, the Monsoon provides for some spectacular visuals. The clouds are mainly formed due to convection over the Indian Ocean, which is why all the normal signatures of cloud formation like thunder and lightning are not very common. It simply pours. The time when thunder and lightning are common is when clouds form locally, during the months of April and May.

Space Craft?

This monstrosity is probably many kilometers long. An interesting thing to notice is the base of clouds, which is always nearly flat. The base is probably around 2.5 to 3 kilometers above the earths surface. This marks the top of the atmospheric boundary layer. Clouds this big are always bad news and seem to be cumulus congestus in the picture. This will eventually grow and bear rain. The formless sheets in front seem to be altostratus and normally dont bear rain. It is probably only in this season that you can see cumuli and stratus clouds together.

Same as above, more dispersed cumuli

Some really high clouds were also visible, indicating strong convection somewhere else. Cirrus clouds are normally found at a height of 5-6 kilometers and look very peaceful.

Cirrus, fibre like

And another shot of cumulus clouds, the smaller variety.

Cumului marching

Compare these with the clouds normally seen a few months before. The sky is way busier than in the months preceding the monsoon. Blame it on the winds.

Why do people honk so much?

This question seems quite important considering that the sanity of people having to tolerate incessant honking might be somewhat rescued from the edge of the cliff on which it now stands if they understand why. Honking probably served an important public purpose, that of preventing two vehicles from occupying the same space at the same time often, but its usage has gone beyond such mundane considerations to being a reflection into the personality of the owner of the horn itself.

First, one must distinguish between different types of honking:

  • The standard honk, which is used for the important public purpose mentioned above.
  • The stylish honk, which rises above the previous one to include (normally irritating to everyone else) tunes or rhythmic patterns. Normally used to show a possible flair for music and an upbeat mood.
  • The angry honk, longer in duration but bursty in nature, when the owner seems to think (or hope) that the honk will become louder and more irritating to others if used for a longer duration. It is normally used to show disapproval.
  • The frustation honk, normally used in beastly traffic jams, and whose duration is proportional to the feeling of powerlessness that the owner feels. Normally used when the owner wants to make something/someone cry for what he is feeling and the effect is conveniently reproduced by pressing the horn.
  • The celebration honk, used when India wins the World Cup or something like that. It consists of innumerable vehicles on the road honking in unison for an unbearably long period of time. One must thank the Indian team for not doing such a disservice to the road travellers of India often.

There might be a richer variety, but these are what I can think of. If one thinks about it, there is no logical reason why some of these should exist. I have heard a person relentlessly honking at a railway crossing when the gates were closed, and others honking back, probably to make him stop. Don’t think it worked very well. The scene felt like watching wolves howling at the moon. There is no rational reason to honk at a closed railway gate, but then the mistake lies in believing that people are driven by reasoning and solid logic in their day to day conduct.

Driving or sitting in a vehicle under busy conditions is one of those few instances in one’s life when you are shown for what you really are. People who seem nice and sweet suddenly start acting bossy and judgemental, and mousy and mild people, well, continue being so. People who tell you that they don’t feel the need to control everyone or everything show their true colors when they are passengers in a vehicle  zipping at 100 kilometers an hour past other vehicles.

All these and other observations point to what seems to be a fundamental feature of the human psyche – the need to assert the Self, to show the world that you exist. As the neuroscientist V. S. Ramachandran points out, the Self cannot really be defined without reaching out to the Other – who or what you are is shaped by your interactions with others. People who are completely shut off from others, like in the case of autistic children, don’t seem to possess (at least observably) what we would call a normal human personality. The honking at a jaywalker becomes more and more urgent unless she acknowledges your presence by looking directly in your direction. While one can explain this away by saying that you were only hoping to draw her attention to the fact that a possibility exists of her being stuck under your tyres, but sometimes even when there is no reasonable chance of this happening, the honks still persist.

The traffic jam is the ultimate put off, one of the few (well, maybe not few) moments in when you simply don’t matter, and really cannot do anything about it. The effect is similar to what you would evoke if you tried to end a fight by trying to walk away and ignore the other person. On the other hand, a person who is angry at you will try to incite anger in you, knowing fully well that that is the only way any decent fight can result. One needs to know that one’s anger is fully reciprocated and probably some mechanism like the mirror neurons will help maintain the feedback loop, keeping the anger flowing from one to the other. In this light, it would be interesting to see how frustration honks start and spread in a traffic jam.

Almost every facet of our personality – beauty, intelligence, aggression – make sense only in a social context. ‘Setting goals for yourself’ or ‘Not following the herd’ seem to simply be replacing the social with a reflexive analysis, but the mechanism is still the same. Which is why we have Special Interest Groups, debating clubs and Facebook which serve the purpose of ‘mutual admiration’, in the words of J.K. Galbraith. Knowing that you matter matters.

Moral stories in the age of computers

All of us have been brought up listening of reading some or the other kind of moral stories –  Panchatantra, Aesop’s fables, Bible stories and so on. They are part of our standard training while learning to live in the world. All moral stories are motivated by some ultimate aim of human life, though these are never explicit or overshadowed by talking animals and trees. Our morals do not develop in a vacuum – they are shaped strongly by our socio-cultural and geographical locations, and moral stories are among the more effective means towards our ‘shaping’. Not only that, like everything else in the world, they evolve, though not necessarily in the Darwinian sense of the word. Aristotle and Plato may have condoned slavery, but not Adam Smith and his ilk. Even then, considering that Aesop’s fables and the Bible provide relevant advice even to this day, there seem to be some things that are eternal, like numbers.

From where do we derive our ethical codes? The most abundant source is of course our own history. When viewed from a certain lens (which comes from a certain metaphysical position about man and his relationship with other humans and the rest of the universe), history can give us all the lessons we need. Which is why it is said that people who forget history are condemned to repeat it – not that we have progressed linearly from being barbarians to civilized people, it is just that we are animals with an enormous memory, most of it outside our heads and in books, and preservation or changing of such a legacy necessarily requires engagement with it. Therefore, ethics and epistemology have always gone hand in hand.

Our times are unique from any other in history simply due to the predominance of science in determining what we know – Ancient Greeks or Indians would do physics and metaphysics simultaneously without necessarily putting one or the other on a pedestal. Scientific method and mystical revelation were both valid ways at getting to the truth. Nowadays, of course, the second would hardly be considered a valid method for getting at anything at all, let alone the truth. Hard to say whether this is good or bad – evolution does not seem to have a sense of morality.

The Newtonian and Darwinian revolutions have had important implications for the modes of moral story telling: First, they remove the notion of an ultimate purpose from our vocabulary. Newton’s ideal particles and forces acting on them removed any ideas of the purpose of the universe, and the correspondence between particle<->force of Newton and Darwin’s phenotype<->natural selection is straightforward. Thus, biology or life itself lost any notion of ultimate purpose. Economists extended it to humans, and we get a human<->pain/pleasure kind of model of ourselves (pain/pleasure is now cost/benefit, of course). All in all, there are some kind of ‘particles’ and some ‘forces’ acting on them, and these explain everything from movement of planets to why we fall in love.

Secondly, history is partially or wholly out of the picture – at any given instant, given a ‘particle’ and a ‘force’ acting on it, we can predict what will happen in the next instant, without any appeal to its history (or so is the claim). Biology and Economics use history, but only to the extent to claim that their subject matter consists of random events in history, which therefore cannot be subsumed into physics.

If life has no ultimate purpose, or to put it in Aristotle’s language, no final cause, and is completely driven by the efficient cause of cost/benefit calculations, then why do we need morals? And how can one justify moral stories any longer?

The person of today no longer sees himself as a person whose position in life is set by historical forces or karma, depending on your inclination, but as an active agent who shapes history. Thus, while the past may be important, the future is much more so. He wants to hear stories about the future, not about the past.

This is exactly where computers come in. If we accept a particle<->force model for ourselves, then we can always construct a future scenario based on certain values for both particles and forces. We can take a peek into the future and include that into our cost-benefit calculations (using discount rates and Net Present Value etc etc.,). Be it climate, the economy or the environment, what everyone wants to know are projections, not into the past, but the future. The computation of fairytales about the future may be difficult, but not impossible, what with all the supercomputers everybody seems to be in a race to build.

The notion of a final cause is somewhat peculiar – it is the only one which is explained in terms of its effect. If I have a watch and ask why it is ticking, I can give a straightforward efficient cause saying because of the gear mechanisms. On the other hand, If I ask why are the gear mechanisms working the way they do, I can only answer by saying to make the clock tick – by its own effect. Thus, if we see the future a computer simulates and change our behavior, we have our final cause back again – we can say to increase future benefit, we change our present way of life. The effect determines the cause.

Corporations, Countries, Communities are faced with the inevitable choice of using a computer to dictate their moral stance. However, one can always question the conception of a human being (or other life for that matter) as doing cost benefit calculations as their ultimate goal. If we need a more textured model of a human, writing an algorithm for it remains an impossibility to this day.

For example, one can argue that the ultimate pupose of life is to live in harmony with nature or that we should ‘manage’ nature sustainably. The former does not need (indeed, does not have at present) a computer model, whereas the other does. One is within the reach of every person, the latter is only accessible to a technological high-priesthood. Which should we choose? at a future time, which one will we be forced to choose?

Therefore, in this post-Darwinian world, can we imagine an ultimate purpose for ourselves that will enable us to act on our own, or will we be guided by supercomputers simulating caricatures of ourselves? Time will tell.

Evolution – Variation and Similarity

Evolutionary thinking (due to Darwin) is no doubt one of those paradigm shifting moments in scientific history, changing how we conceive of the world around us and ourselves. The idea of ‘Descent through Modification’ is now well established and accepted.

While evolution is not a disputable fact, a major source of debate a few decades ago (and even nowadays, to some extent) has been the causes for evolution. Enter a evolutionary biology class and you will see that everyone tries to explain observable traits (non-jargon way of saying phenotypes) using fitness arguments – how this or that trait was required for survival and reproductive success, and hence it is here today. These arguments stem from a view that is called the ‘Modern Synthesis’ – evolution happens primarily through natural selection, and natural selection requires a set of variants to select from, and this variation within a population is given by random genetic mutation. It is called the ‘Synthesis’ since it combined ideas from evolution and genetics to give a plausible answer to the mechanism of evolution. The whole idea of evolutionary game theory rests on this hypothesis, and so does evolutionary psychology.

However, a physicist or a mathematician or anyone else who tries to look for patterns in phenomena will tend to be exasperated by natural selection arguments for everything: in some cases, it is obvious that natural selection caused evolution, while it is not so in others. However, a knee-jerk answer to any evolutionary question by a biologist will invoke natural selection. Now, most of these answers are plausible, but that does not mean anything. For example, a crash in a predator population can easily be put down to a lack in fitness, but everyone who has studied the predator prey model will tell you that this crash comes about due to interactions between predator and prey populations, and has nothing to do with genes or natural selection.

Creating evolutionary fairy tales frees the biologist from looking at a phenomena at a deeper level, and sometimes one feels that depth is what is lacking when one reads up evolutionary biology. The oft quoted example is of the Fibonacci spirals in plants – this shows up everywhere, from shapes of galaxies to arrangement of seeds in flowers. A hardliner selectionist would tell you that this is because there were many variants of the universe and ours was the only one that managed to survive (reproduce?), and thus all such successful survivors will have Fibonacci spirals because of their ‘fitness improvement’. Now, one cannot disprove this, no doubt, but the question is whether one should accept it.

For me atleast, the answer is no – while selection of variants has its place in biology and (I sceptically say this) in other fields, it cannot explain the unity underlying phenomena: Certain things ‘just happen’ to look/behave/think similarly, and this evolution via selection cannot explain. Are there physical, chemical, informational constraints on a living being that simply does not allow certain variants? Are ‘gaps in the fossil record’ actually ‘gaps’ –  is there a step jump from one form to another? Answering these questions is way harder than coming up with ‘plausible’ selectionist arguments, and has very rarely been attempted in the history of biology. However, if evolutionary theory has to have the depth seen in physics or mathematics, such work has to inevitably happen.

Situating the Mind

One of interesting themes that emerged from a workshop that I attended recently is the problem of placing the Mind in a certain place. Up front, one must assume that it is sensible to separate the Mind from the Brain, at least for purposes of analysis if nothing else. Neuroscientists may have problems with this, but that is their problem.

The first approach to this problem was to deny that anything ever happened within the Mind – the brain was a simple input/output machine, put in stimulus and get out behavior. There is nothing called mental states and anything ‘unobservable’ had no real existence. This was the approach of the Behaviorists, and this is what gave rise to traditional psychology, with its ideas of conditioning and behavioral modification. This view is quite defunct especially after Chomsky and others at MIT and Harvard came into the picture.

The second dig at the problem was taken by the cognitive scientists from the Chomsky tribe. This still dominant view considers the brain to be a computer (note that they do not think of a computer as a good model, but rather that the brain is a computer). While the particulars of implementation may be debated (Turing Machine vs. Neural Networks), the idea is that the Mind has certain internal states, which when combined with sensory inputs gives you all the rich everyday experience that any person is familiar with. To a first approximation, and as a working hypothesis, this is extremely useful and has led to great insights about the functioning of the Mind, especially with regard to perception and language. Computer vision is the brainchild of this era, and its results are there for anyone to see.

However, biologists were probably dissatisfied by this ‘disembodied’ mind that the computer scientists had come up with. This would imply that the relation between the mind’s functioning and the environment in which it evolved is very small. No self respecting biologist can ever accept such a claim, and this led to an ’embodied’ concept of the mind, where perception (for example) was not the output of an algorithm but a combination of body states (walking, running, eating, etc.,) and mental states, and one cannot separate the two out since the mind did not evolve on its own, but rather developed as part of a whole.

Thus, we see a trajectory of thinking about the Mind, which moves from a complete denial of it, to a disembodied version to one (now popular) version which places it firmly within an organism. In some sense, the complexity which one attributed to the mind has increased over time.

The next step came from (obviously) the philosophers, some of whom claimed that the Mind does not exist within the person, but is a combination of the organism and its environment. What they say is that the environment does not simply affect cognitive processes, but is a part of them. Thus, no environment means some processess simply will not work.

Thus, the Mind is no longer a localized entity but which is distributed over space and (maybe!) time. One hopes this gradual extrapolation does not lead to Deepak Chopra like new-age mysticism and leads to claims that can actually be tested for their truth value. But again, one sees that this is a step up the complexity ladder. Slowly, the study of the Mind has gone from simple to very complicated ideas about its location, forget about function.

This is in contrast to historical developments in say physics, where complicated phenomena were ultimately explained using a small set of concepts which were considered fundamental. As with the study of the Mind, the study of the Earth system has run into difficulties. What one hoped would end at studying large scale motions of the atmosphere and ocean is nowadays studying phytoplankton and its effects on global climate!

Intuitively, there seems to be something very different about the phenomena that we are trying to study in the mind sciences or earth system science than the atoms or celestial objects that physics studied. You cannot study vision and learn things that extrapolate to the mind in general, just as you cannot study a liver and tell what the organism is likely to be. The fact that even the question of what to study is not well defined leads to very dubious research which gives the whole field a bad name. Do we, as our predecessors did, study the liver, pancreas and heart and say well, put all this together and you get a living being? Or do we try to answer the question ‘what is life’?

It does not seem very clear as to how the present range of scientific methods can help answer a question like the latter. The study of the Mind, the Earth or even Biology is at a stage similar to maybe where Mechanics was at the time of Kepler. People are looking at various ways to chip away at the same problem, some traditional, some extremely offbeat, in the hope that what one considers valid questions will be answered. Whether they will be answered or shown to be invalid, time will tell.

Tales Clouds Narrate

Been meaning to write this for some time, but did not have enough pretty pictures to put in, so kept delaying it. Now that I think the pictures are pretty enough, here we go.

Clouds have fascinated people of various inclinations – from poets to physicists to farmers to nature lovers. They symbolize freedom, fertility and make sunsets magnificent. Apart from the metaphorical tales that poets imagine clouds to carry, they do tell us a lot of things, some of which I hope to convey through pretty pictures.

Clouds are among the most important factors driving our climate and definitely the least understood. The fact that they are so important derives from that fact that the climate is determined to a large extent simply by the amount of solar radiation that is trapped on earth, and clouds play a huge role in determining that amount. The atmosphere is almost completely transparent to incoming sunlight. The only thing that can reflect sunlight back to space are clouds, cooling the earth. Interestingly, clouds also absorb almost all the infrared that the earth’s surface emits, thus heating it. Depending on what type of cloud it is, clouds can either cause a net heating or cooling of the earth.

As a fluid dynamical problem, clouds are in a league all of their own. They display a nice interplay between dynamics and thermodynamics and are insanely difficult to model. If you look at the IPCC reports, the uncertainty due to clouds dominates any other factor. Of course, you can just numerically integrate equations of motion to see cloud development, but qualitative understanding is a recent thing.

Another useful thing about clouds is that they are the only opaque object in the atmosphere, and can be used to understand the state of the atmosphere. Since air is a fluid like water, it supports waves which carry momentum from one place to another and the best place to look for wave signatures is in clouds. The main waves in the atmosphere are Rossby and Internal Gravity waves. Rossby waves are huge, with wavelengths in thousands of kilometers, whereas Gravity waves are small enough to be seen. They are seen as regular patterns of cloud-no cloud and easy to spot, especially during the evenings.

Textbook picture!
Textbook Gravity Wave signature

The above is about as good a picture as you will find. Gravity waves normally will occur when denser air from the bottom will rise up and eventually come down due to their weight as compared to their surroundings. When I say small wavelength, it still is in the order of hundreds of meters! A couple more, but not as distinct.

Scattered, but still visible!
Still fainter, but nice looking cloud :)

Stratus clouds are thin (relatively!) and very large in spatial extent. They are a sign that vapor is unable to rise high due to strong density differences in the atmosphere, i.e, the atmosphere is strongly stratified. Thus, instead of rising high, it simply spreads out to a thin, large layer. This shows that the atmosphere is stable to rising motion – which is a bad thing! A stable atmosphere discourages convection of water vapor, which means less rain.

A more familiar sight in tropical areas like ours are cumulus clouds, which are normally associated with convective activity and rainfall. On nice and windy days, they can ‘march’ in step, as shown below.

Cloud March near home!

These can also develop into the thunderstorm version, which are called cumulonimbus.

Eye Candy!

Ok, that’s not a cumulo-nimbus tower, but you get the idea. Also, the sunset picture was too good to not put into the post :D Cumuli indicate either strong convection/ a weakly stratified atmosphere (which are actually cause and effect).

The height at which clouds start forming is another indication of the stability of the atmosphere. Cloud formation implies water vapor must condense, and this implies that the temperature must be low enough. If the clouds are low, it means that there are low temperatures at a low altitude, thus the atmosphere is quite stable. Higher up means the atmosphere has been well heated by the surface, like a kettle on a stove.

All in all, literally having your head in the clouds is good time pass!

The Subject-Object distinction

A basic ontological position that is taken up in the quest for knowledge is that of  Subject and Object. The Subject is the Observer, the Object the Observed, and there has to be a definite distinction between both. Once this is setup, the observer uses some means of acquiring knowledge about the observed, be it meditation, divine revelation or the new-fangled thing called the scientific method. The knowledge acquired about the Object, through a means that is independent of the Subject is thus ‘objective knowledge’. This kind of knowledge is supposed to reflect reality as it truly is, without contamination by the biases of the observer.

It is easy to see why the scientific method of repeated observation and experimentation is the preferred mode knowledge acquisition – God apparently reveals to people of every religion that theirs is the true religion or that theirs is the superior religion, and obviously not everyone can be right, i.e, there is some ‘contamination’. Of course, the previous statement implicity assumes that there is actually a single reality, but without that assumption, one falls into the critical theory mire, which to me is the worse of the two alternatives. Thus, the scientific method, atleast in theory, can be relied upon to produce subject independent knowledge about some object.

The crucial thing, again, is the fact that we must be able to provide a clear separation between the observer and the observed for this to work. Without this separation, the scientific method is as good as divine revelation. There are quite a few objects that are amenable to this separation – the solar system, atoms, molecules, plants, animals, ice-cream, among other things. However, there are certain objects that do not allow such a distinction (Of course, you cannot call it an object anymore, but Im retaining the nomenclature and discarding the ontological connotation).

For example, the stock market – If someone gives you ‘objective knowledge’ that there is a good chance of the stock market crashing and you pass on that information and you and your friends selling all your holdings triggering a crash, there is absolutely no way of telling whether the crash would have happened if you did not know that it would happen. Another example would be the ‘study of the Self’ – If you figure out through psychoanalysis or meditation or something else that ‘humans are essentially xyz’, and you begin to see yourself acting (or trying to act) in that manner, it is difficult to gauge whether behavior follows the statement or vice versa. This is not to say that humans are not xyz, but whether they are only xyz. If someone subscribes to the Freudian prescription of  the mating instinct dominating our actions or the Christian one that Man is incomplete without God’s grace, and tries to interpret his everyday action through such a framework, then he is likely to see that everything ‘fits’. But it is evident that there is no way that this is objective knowledge.

The previous paragraphs can be considered as a very short summary J. Krishnamurti’s line of thinking – that there exist situations where the subject-object distinction does not hold and thus statments about objectivity or subjectivity make no sense. The critical theorists in addressing the same issue come to the conclusion that everything is subjective – made famous by the statment ‘ Death of the Author’, but the issue to me cannot be interpreted from the subject-object perspective – the negation of objectivity need not only be subjectivity but also lack of both.

Take the example of a drama – one may imagine that there is a clear distinction here between the observer and the observed. But if one takes another look, the drama is written and produced keeping the audience in mind, for otherwise there is no point in it being performed, and thus the audience is also part of the play – the observer is also the observed. The drama, as it unfolds, is a dialogue between the performers and the audience and can thus be interpreted only as a whole. A ‘flop’ is one which fails to bring about this unity, with the dramatist complaining about how backward his audiences are. The drama is simply not situated within the correct context, which alienates the audience from the drama.

Similar questions arise in other places as well – can historical records and religious texts be interpreted by an observer who is not also the observed ? In India, the interpretation of history is a huge controversy. But neither the Hindutva glorification of the spiritual nor the Marxist focus on the material can do justice, since neither ‘lives’ the history – it is an exercise in textual interpretation. The only true history can come from someone who actually lives it. Similarly, atheists/rationalists tearing apart religious texts serves little more than angering others.

Another interesting place to look at is music. It is well known that most classical music is also religious music – some of the finest music has been in the praise of God (regardless of definition). Is is possible to appreciate Handel or Tyagaraja without sharing the intense experience of divinity (again, regardless of how you define divinity) that lead to the actual creation of the music ? Bland technical music criticism leads to a ‘fossilization’ of the music just as textual criticism of religion only shows a religion that is ‘dead’ – both lead to unnatural and normally harmful ideas of  ‘purity’ which do not allow any evolution of the object under scrutiny. A true purist will try and maintain continuity rather than stasis – not hinder evolution, but participate in deciding its direction.

This question is more important now than ever, given that natural scientists and engineers are called to take on the burden of examining and interpreting phenomena that are complex beyond comparison to the objects of study which they initially started off with, which decided their methodology. Unless we evolve new ways to understand reality, all we will be doing is tuning zillions of parameters, looking for an Objective Model of the World.